

GCSE Mathematics (Linear)

Foundation Tier Paper 1 Mark scheme

43651F November 2015

Version 1.0 Final.

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

Q

Use of brackets

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

•	
М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	e.g. accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416

Marks awarded for quality of written communication

It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 1 Foundation Tier

Q	Answer	Mark	Comments
1a	Evens	B1	
1b	Impossible	B1	
1c	Unlikely	B1	
2	$\frac{3}{2}$ or $\frac{2}{3}$ seen or $\frac{24}{3}$ or 120 ÷ 15 or build up to at least 12 $1\frac{1}{2}$, 3, $4\frac{1}{2}$, 6, $7\frac{1}{2}$, 9, $10\frac{1}{2}$, 12 or correct partitioning of 12 eg $3 + 3 + 3 + 3 = 1\frac{1}{2} + 1\frac{1}{2} + 3 + 3 + 3$	M1	Allow one error in build up Partitioning must get as far as two $1\frac{1}{2}$ s
	8	A1	
3	500 – (149 + 55) or 204 or 351 or 445	M1	oe Allow mixed units
	(£)2.96(p)	A1	
4	1.04 1.34 1.4(0) 1.43	B1	
5a	28	B1	

Q	Answer	Mark	Comm	ents	
			•		
5b	-2x - 3 or $-3 - 2x$	B2	B1 (+) $-2x$ or (+) -3 or Do not ignore further we B2 response with further B1 response with further	ork ie er work is B1	
5c	$4 \times 4 + 5 \times 1$ or 4×4 or 16 seen	M1			
	21	A1			
		1			
6a	Arrow at 640	B1	Accept any clear indicate Must be over halfway be and less than 650		
	2.38 or 238 and 0.93 or 93	M1			
	(£)1.45	A1	Allow £1.45p		
	Additional guidance				
6b	Allow transcription or misread errors if student clearly selecting 2.38 and 93 and not a different value from the table eg				
	2.28 – 93			M1A0	
	2.38 – 98			M1A0	
	2.38 – 1.24 (wrong row)			M0A0	
	Answer only of (£)1.45(p)			M1A1	

Q	Answer	Mark	Comments
	Repeated addition 1.24 + 1.24 + 1.24 (+)		Repeated addition/ subtraction or build up/
	or build up 1.24, 2.48, 3.72,		down must use at least three 1.24s
	or repeated subtraction from 10 10 – 1.24 – 1.24 – 1.24 (–)	M1	Allow mixed units
6c	or build down 10, 8.76, 7.52, 6.28,		Allow 1.25 used
	or 3.72 or 4.96 or 6.20 or 7.44 or 8.68 or 9.92 or 11.16 seen or 12.40 – 1.24		
	or 8 × 1.24 or 9 × 1.24		
	8	A1	With no arithmetic errors seen
	Parallelogram joined to 'no lines of symmetry'	B2	
7	Rectangle joined to 'all angles equal'		B1 one correct
	Rhombus joined to 'all sides equal'		
8a	2.5	B1	oe eg $\frac{10}{4}$ or $\frac{5}{2}$ or $2\frac{1}{2}$ or 2.50
8b	-10	B2	B1 –14
9a	7	B1	
	'	ı	•
9b	(7 + 11 + 8 + 12 + 7) ÷ 5 or 45 ÷ 5	M1	Condone missing brackets

Q	Answer	Mark	Comments
10a	0.45 and 30%	B1	
10b	20% and $\frac{1}{5}$	B1	
		T	,
10c	$\frac{1}{3}$	B1	
11		В3	B1 each correct grid Accept shapes with or without internal lines Shapes must be in correct orientation but may be anywhere on the relevant grid
12a	11 and 23	B2	B1 one correct and no more than one incorrect or both correct and no more than one incorrect
12b	Any two primes that add to a cube eg (3, 5), (3, 61), (5, 59), (11, 53), (17, 47), (23, 41) etc	B2	B1 one prime and any other number that add to a cube number eg (1, 7), (2, 6), (2, 25), (7, 57)

Q	Answer	Mark	Comme	ents		
	180 – 81 or 99	M1	Angle may be shown on	diagram		
	360 – (their 99 + 74 + 32) or 360 – 205	M1 dep				
13	155	A1				
	Additional Guidance					
	155 must not come from 81 + 74			M0M0A0		
	99 seen for interior angle at D even if other working seen			M1		

Q	Answer	Mark	Comme	nts
	150 + 60 × 6 or 510	M1	oe	
	0.2 × 600 or 120 or 0.8 × 600 or 480	M1	oe If a 'build up' method u 20% or 80%, must be a fu	
	720 ÷ 4 or 180 or 720 ÷ 4 × 3 or 540	M1	oe If a 'build up' method 25% or 75%, must be a fu	
	510 and 480 and 540	A1		
	Correct conclusion based on their three values with at least two of 510, 480 or 540 correct	Q1ft	Strand (iii)	
	Ado	ditional G	Guidance	
14	150 + 360 = 510 $0.2 \times 600 = £120$ $720 \div 4 \times 3 = £540$ Shop B			M1 M1 M1 A0
	150 + 360 = 410 $0.8 \times 600 = £480$ $720 \div 4 = £180$ Shop C			Q1 M1 M1 M1 A0
	150 + 60 = £210 $0.8 \times 600 = £480$ $720 \div 4 \times 3 = £540$ Shop A			Q0 M0 M1 M1 A0
				Q1
	Examples of build up			
	10% = 60, 2 × 60 = £120			M1
	$10\% = 600 \div 10 = 6, 2 \times 6 = £12$			M1
	10% = 7.2, 20% = 14.4, 5% = 3.6, 25% = 18		MO	

Q	Answer	Mark	Comments		
	Side of square stated or shown as $\sqrt{36}$ or 6 or 6 \times 6 = 36	M1			
	$(44 - (2 \times \text{their 6})) \div 2$ or $(44 \div 2) - \text{their 6 or 16}$ or $(44 - 4 \times \text{their 6}) \div 2$ or $(44 \div 2) - 2 \times \text{their 6 or 10}$	M1dep	16 is their total length 10 is their length of R		
	their 6 × their 16 or 36 + their 6 × their 10	M1dep			
	96	A1	SC1 correct calculation of area for any larger rectangle with perimeter of 44	де	
	Ac	ditional G	Guidance		
15	$\sqrt{36} = 7$ 8 7 7 8 7		M1 M1dep M1dep A0		
	Answer 105				
	$36 \div 4 = 9$ 9 9 Answer = 117		SC1		
	8 7				
	7 7		SC1		
	8 7 Answer 105				
	see over for further additional guidance				

	Additional Guidance cont	
	7 6 6 6 7 6 Answer 78	M1 M0 M0 A0
15 cont	4 6 6 6 6 Answer 6	M1 M0 M0 A0
	$7 \times 7 = 36$ $4 \times 7 = 26$ $44 - 26 = 22$ $22 \div 2 = 14, 14 + 7 = 19$ $7 \times 19 = 79$	M1 M1dep M1dep, A0

Q	Answer	Mark	Comments
	$\frac{9}{12}$ and $\frac{4}{12}$	M1	oe fractions with matching denominators $ \text{eg } \frac{18}{24} \text{ and } \frac{8}{24} $
16a	<u>5</u> 12	A1	oe fraction eg $\frac{10}{24}$ Accept full decimal answer ie $0.41\dot{6}$ or $0.416r$

	Alternative method 1			
	One pair of fractions multiplied correctly eg $\frac{5}{18}$ (× $\frac{9}{10}$) oe or $\frac{45}{3 \times 6 \times 10}$ or $\frac{1 \times 5 \times 9}{180}$	M1		
	45 noe	A1	May be implied by answer $\frac{1}{4}$	
	1/4	A1ft	ft their fraction fully simplified if M1A0 awarded and all three fractions multiplied	
16b	Alternative method 2			
	One numerator and one denominator cancelled correctly	M1	$eg \frac{1}{\cancel{3}} \times \frac{5}{6} \times \frac{\cancel{9}}{10}$	
	Complete correct cancelling shown $\frac{1}{3} \times \frac{\cancel{5}}{\cancel{5}} \times \frac{\cancel{5}}{\cancel{5}} \times \frac{\cancel{5}}{\cancel{10}} \times \frac{\cancel{5}}{\cancel{10}$	A1	Ignore further incorrect cancelling once M1A1 awarded	
	1 4	A1		

Q	Answer	Mark	Comments	
47.	$\frac{1}{2} \times 8 \times 4.5 \ \ (= 18)$	D4	Must see 8 and 4.5 used	
17a	or $8 \times 4.5 = 36$ and $36 \div 2 (= 18)$	B1	ie only 4 × 4.5 is B0	
	Alternative method 1			
	9 ÷ 4.5 and 24 ÷ 8 oe	M1	May show sides of rectangle divided into 2 and 3 or 2 \times 3	
	their 2 \times their 3 \times 2 or their 2 \times 6 or their 3 \times 4	M1dep	Rectangle divided into 12 triangles	
17b	12	A1		
	Alternative method 2			
	9 × 24 or 216	M1		
	their 216 ÷ 18	M1dep		
	12	A1		
			B1 (4, y) or (10, y) or (x, 2) or (x, 8)	
	A point that lies on the circumference, eg (4, 5), (10, 5), (7, 2), (7, 8)	B2	B1 for 4 or 10 clearly shown as min or max horizontal value	
18	9 (1, 9), (10, 5), (1, 2), (1, 5)	g (1, 0), (10, 0), (1, 2), (1, 0)	B1 for 2 or 8 clearly shown as min or max vertical value	
	Ac	ditional C	Guidance	
	NB circle measurement is 2.6 cm so if s answer, but allow as 2.6 rounds to 3, so		or added then rounded can lead to correct wer line, ignore any other working	

Q	Answer	Mark	Comm	ents
	270 ÷ (3 + 2 + 1)	M1		
	45	A1	No wrong working seen	
	135, 90, 45	A1ft	ft their 45 if all values co Values must be written i Correct answer only full Incorrect answer only wi is not M1, A1 NB Build up method mu	n order marks ith 45 as a part ratio
	Ac	dditional (Guidance	
	Be careful of correct answers from wrong work			
	eg 270 ÷ 3 = 90, 270 ÷ 2 = 135, 270 ÷ 1 = 270 135 : 90 : 270			MO
	eg 270 ÷ 3 = 90, 270 ÷ 2 = 135, 90 ÷ 2 = 45, 135 : 90 : 45		MO	
	270 ÷ 6 = 35			M1, A0
19	105 : 70 : 35			A1ft
	270 ÷ 6 = 45		M1, A1	
	145 : 90 : 45			A0
	270 ÷ 6 = 45			M1, A1
	45 : 135 : 90			A0
	270 ÷ 6 = 41.2 123.2 : 82.4 : 41.2			M1, A0 A0ft
	270 ÷ 6 = 41.2 123.6 : 82.4 : 41.2			M1, A0 A1ft
	124 : 82 : 41 Ignore rounding after correct ft			
	270 ÷ 6 = 41.2		M1, A0	
	124 : 82 : 41 Answers do not ft. No intermediate values		A0ft	
	135 : 45 : 90 No working, not in order		МО	
	145 : 90 : 45	5 No working, not correct		МО
	see over for furth	ner addition	nal guidance	

	Additional Guidance cont		
	3 + 2 + 1 = 5		
19 cont	270 ÷ 5 = 54	M1 A0	
19 COIII	162 : 108 : 54	A1ft	
	270 ÷ 5 = 54	MO	
	162 : 108 : 54		

Q	Answer	Mark	Comme	ents	
20a	20 or 20 out of 120 or 20 in 120	B1	NB $\frac{20}{120}$ oe is B0		
	Yes ticked	B1	If boxes blank, yes may l wording	be implied by	
	Valid reason eg				
	1 should be (about) 20 (but it is much lower)				
	or 6 should be (about) 20 (but it is higher)	Q1	oe Strand (i) Only award if Yes ticked	or implied	
	or 6 is much higher than 1				
	or frequencies should be all (about) the same				
	Additional Guidance				
	There are 4 ways to score the Q mark				
	Comparing frequency of 1 to 20				
	Comparing frequency of 6 to 20				
20b	Referring to significant difference between frequency of 1 and 6				
	Referring to the fact that all frequencies should be the same				
	Yes ticked and:			B1	
	6 has above the average which is 20			Q1	
	6 more, 1 a lot less			Q1	
	Lands more on 6. It should land on each side about the same number			Q1	
	The range of results is too large on specific numbers (1,6) showing there is something making it land on a 6 and not a 1			Q1	
	The frequency of landing on 6 is over 7 times the frequency of landing on 1			Q1	
	There is a large range of 33 between the highest and lowest frequency			Q1	
	Because the frequency is not all the same so it isn't fair			Q1	
	Frequency should be the same for all numbers			Q1	
	see over for	example	s of Q0		

	Additional Guidance cont			
	Yes ticked and:	B1		
	Lands more on 6	Q0		
	6 has appeared as the mode number whereas 1 is the least amount	Q0		
20b cont	Is heavier on number 6	Q0		
	Landed on 6 38 times	Q0		
	All number are about average except 1 and 6	Q0		
	Answers should be more evenly spaced out	Q0		
	Each time the number goes up, the frequency goes up	Q0		

Q	Answer	Mark	Comments	
	2x + 2 + 3x - 1 = 36	M1	oe	
	$5x = 35 \text{ or } x = 35 \div 5$	A1		
	7	A1ft	ft $5x = a$ $(a \ne 36)$ or $bx = 35$ $(b \ne 2 \text{ or } 3)$	
	$2 \times$ their 7 + 2 and $3 \times$ their 7 – 1 and $4 \times$ their 7 – 6 and $5 \times$ their 7 + 2 If no working shown at least 3 values must be correct for their 7	M1	Their 7 must come from the solution (correct) of a single equation formed from expression = 36 If 7 used, three of 16, 20, 22 and 37	
	16, 20, 22 and 37 and 21 shown as		SC3 2 <i>x</i> + 2 = 36, <i>x</i> = 17, values 36, 50, 62, 87 and median identified as 56	
	median or all 4 expressions correctly evaluated and median correctly identified	A1ft	SC2 2 <i>x</i> + 2 = 36, <i>x</i> = 17, values 36, 50, 62, 87	J
			SC1 $2x + 2 = 36$, $x = 17$ (no other equation seen)	l
	Additional Guidance			
21	NB As x is positive only the first 3 values are needed to find the median. If the 4 th value is worked out it must be evaluated correctly			
	NB Range is 21 so 37 – 16 = 21 is A0			
	2x + 2 + 3x - 1 = 36		M1	
	5x = 37		A0	
	x = 7.4		A1ft	
	16.8, 21.2, 23.6, 39	M1		
	22.4	A1ft		
	2x + 2 = 36, $x = 17$ and no other equation	n seen	SC1	
	Above and 36, 50, 62, 87		SC2	
	Above and 56		SC3	
	3x - 1 = 36, x = 12.33		M0 A0 A0	
	26.66, 36, 43.32, 63.65		M1	
	39.66 (decimals must be to two dp or better)		A1ft	
	see over for further	er addition	nal guidance	

	Additional Guidance cont			
	2x + 2 = 36		MO	
	2x = 38		A0	
	x = 19		A0	
21 cont	36, 56, 70, 96		M1	
	63		A0ft	
	2x + 2 + 3x - 1 = 36		M1	
	3x = 39	Two errors in solving the equation	A0	
	x = 13		A0ft	
	28, 38, 46, 67		M1	
	42		A1ft	